Securing recognizers
for rich video apps

How should developers
build rich video apps?

Privacy concerns with
rich video apps

1. Poor use of video by the app
2. Compromise of the app

How can the platform
help developers build
secure rich video apps?

Architecture Goals

o |east privilege

o separation of privilege
° privacy by default

Recognizers

Recognizers (revamp)

Recognizers (revamp)

((300, 200),
(400, 300))

Recognizer

e A function on sensor data stream

—For this work, we focus on live video

 Extracts useful features/components

—Faces, gestures, objects, locations....

* May maintain some internal state

SUPERVISOR

(rate limiting)

RECOGNIZER APPLICATION Show
MODULE MODULE Result

Video Capture

N e e — —

Sandbox

RECOGNIZER APPLICATION Show
MODULE MODULE Result

Separation of privilege
Least privilege
Privacy by default

Sensitive Less Sensitive

Embarrassing Coordinates of a
video face in said video

High Bandwidth Low Bandwidth

V 4
l‘{ ’T";‘;"

Embarrassing Coordinates of a
video face in said video

Implementation
* Python, OpenCV, ZeroMQ

» Separate processes for each module
» Sandbox filesystem and network access

e Bandwidth limits with token bucket

Evaluation

* How hard is it to write apps in this style?
* What's the performance impact?

* How much privacy benefit do we get?

Methodology

* Looked at 17 existing OpenCV applications

written in C++

— Ported into Python, then ported to use our

architecture

* Ran each application 8o times on a fixed test

video tailored to that application

— Current results are from a server class machine

running Ubuntu

Developer Burden

* Converted 17 computer vision applications written in
Python to use our architecture.

— Simple case: Split main event loop into two, reuse

common send/receive code.

— Sending settings or Ul events back to the recognizer
module slightly more complicated, but still

straightforward.

* Potential for automated or tool-assisted development.

Performance

* Privilege-separated versions are roughly the
same as the monolithic versions
— <10% overhead for 15/17 applications

* Privilege-separation can offer greater
opportunities for parallelism and concurrency

— 11/17 applications saw a speed up of 10% or more

Privacy Benefit

* Privacy budget: how much bandwidth would an attacker
need to exfiltrate video with enough fidelity to still recognize

faces?
— With optimized use of x264 encoding, we found a conservative
estimate of 300 bytes per frame.
* Good apps in our corpus: only extract straightforward
features, with small object sizes.
— 4/17 apps would work as-is

— 12/17 apps would work if they limited their output to once per

second

Security Analysis

* Can an attacker record embarrassing video and

exfiltrate it? No.

 Can an attacker extract confidential
information from the video and exfiltrate it?

— Yes, if the attacker can compromise the recognizer
module, but not if they can only compromise the core

application module.

Code

* Architecture code and example applications is
available on GitHub:

* Apache 2.0 licensed

Conclusion

* QOur security architecture for recognizer

applications helps to secure visual recognizer
applications while allowing generic and novel

computation on video input.

* Our architecture is practical, has a modest
performance impact, requires little developer
burden, and provides significant privacy and

security benefits.

