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ABSTRACT

Cameras have become nearly ubiquitous with the rise of
smartphones and laptops. New wearable devices, such as
Google Glass, focus directly on using live video data to en-
able augmented reality and contextually enabled services.
However, granting applications full access to video data ex-
poses more information than is necessary for their function-
ality, introducing privacy risks. We propose a privilege-sep-
aration architecture for visual recognizer applications that
encourages modularization and least privilege—separating
the recognizer logic, sandboxing it to restrict filesystem and
network access, and restricting what it can extract from the
raw video data. We designed and implemented a prototype
that separates the recognizer and application modules and
evaluated our architecture on a set of 17 computer-vision ap-
plications. Our experiments show that our prototype incurs
low overhead for each of these applications, reduces some
of the privacy risks associated with these applications, and
in some cases can actually increase the performance due to
increased parallelism and concurrency.

1. INTRODUCTION

Sensor-rich, contextual, and augmented reality comput-
ing is becoming more prevalent with devices like Google
Glass [10], Meta [2], Kinect [16], and an increasing number
of smartphone applications, such as Layar [1]. In response,
Jana et al. [12] introduce a privilege separation architecture
for such applications that protects privacy by segregating
sensor data processing into a separate module. A recognizer
implements a single task on sensor data: a recognizer “rec-
ognizes” and outputs certain image features the application
wants access to. Instead of giving the application full access
to the sensor data, the application receives access only to
features extracted by the recognizer. For instance, a face-
detection recognizer might analyze video frames and output
the location of all visible faces. Figure 1 shows an example
of the input and output of a edge detection recognizer.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions @acm.org.

SPSM’16, October 24 2016, Vienna, Austria

(© 2016 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ISBN 978-1-4503-4564-4/16/10. .. $15.00

DOL: http://dx.doi.org/10.1145,/2994459.2994461

53

David Wagner
University of California, Berkeley
daw@cs.berkeley.edu

frame

(a) The original video frame

edges

(b) The extracted contours drawn on a blank background.

Figure 1: Detecting the contours of edges is a good
example of a computer vision recognizer. From a full
video frame, only the contour points of the edges
are extracted. The detected edges might be used
directly by the application or could also be used as
input to other recognition tasks.
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Figure 2: Our recognizer architecture. The recog-
nizer module has access to the camera but can be
securely sandboxed to prevent network and filesys-
tem access. The application module receives the re-
sults of the recognizer through the supervisor proxy,
which restricts how much data the recognizer can
send.
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Previous work focused on an architecture where applica-
tions are limited to a set of OS-provided recognizers [12].
However, the space of features that applications might want
to be able to extract from live video is endless. As soon
as an application wants to deviate from the OS-provided
recognizers, this approach becomes insufficient. Perhaps the
application needs to implement novel, unexpected function-
ality, or it has certain performance needs that the system’s
algorithms do not provide.

We focus on applications that use potentially sensitive sen-
sor data, such as live video feeds, motivating the design of an
architecture that can protect users from applications that,
while non-malicious, may not be 100% trustworthy. This is
particularly relevant for smartphones, where the incidence
of malware has been very low [14]: applications that are
accidentally over-privileged [8] or misuse personal informa-
tion and identifiers [7] are far more common than malicious
applications. These applications might not intend to leak
sensitive data or perform malicious actions, but might end
up doing so inadvertently.

We propose a new architecture to address these challenges,
illustrated in Figure 2. Our recognizer architecture focuses
on allowing novel recognizers that the system designers may
not have anticipated, while still restricting access to raw sen-
sor data and encouraging security-sensitive application de-
sign. Our architecture separates the computer vision tasks
into a distinct “recognizer” module, and restricts the band-
width at which the recognizer module can communicate with
the main application module. The bandwidth restriction en-
courages developers to place any code requiring access to the
raw sensor streams inside the recognizer module, and to only
extract the minimal features required for the application’s
functionality. Thus, our architecture encourages privilege
separation and least privilege of the components. This sep-
aration allows the system to sandbox the recognizer code,
preventing actions that could leak information, such as net-
work access or writing to the filesystem. This design allows
general computation on sensor streams, while encouraging
and assisting application developers to adopt a more private
and secure design.

Consider an augmented reality application that allows a
user to sculpt virtual objects with their hands. A conven-
tional implementation of this application would request full
access to the video in order to extract hand and finger po-
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sitions so it can recognize gestures and interaction with the
virtual sculpture. Because this application receives full ac-
cess to video feeds, if this application were to be compro-
mised, it could be used to spy on the user and others in the
vicinity. Essentially, if any application that does computer
vision is compromised by an attacker, it becomes a remote
access trojan (RAT).

Let’s look at how this sculpting application would work in
our privilege-separation architecture. The recognizer mod-
ule would analyze each frame to extract hand and finger
positions, angles, and depths, and output only these key
features. The core application would show the Ul, commu-
nicate with network services, and use the outputs from the
recognizer to manipulate the virtual sculpture.

This greatly reduces the risk of compromise. Vulnerabil-
ities in the core application cannot be used to spy on the
user, as the core application does not have access to the
video feed. Also, our architecture provides partial protec-
tion against vulnerabilities in the recognizer module: such
vulnerabilities might allow the attacker to extract informa-
tion about the user’s surroundings (for example, decoding
and exfiltrating a credit card number, if their credit card is
ever held within the field of view of the camera), but the
bandwidth limit on the channel between the recognizer and
the core application means the compromised recognizer can-
not be used to record an embarrassing video and upload it
to the attacker.

We implemented a prototype of our recognizer architec-
ture in Python, using the popular OpenCV computer vi-
sion library [11]. We constructed a benchmark suite based
upon applications from the DARKLY corpus [13] (ported to
Python) as well as a few other example applications we
selected. We evaluated our architecture’s performance by
comparing the performance of these applications in our priv-
ilege-separated architecture, their performance as monolithic
Python code, and their original native code performance.
We found that our recognizer architecture imposes minimal
performance overhead, and in some cases increases perfor-
mance due to an increase in parallelism and concurrency.
We argue that video recognizer applications function well
under a bandwidth-constrained channel between the recog-
nizer and the application, and this can greatly reduce the
chances of exfiltration or misuse of raw video data.

2. BACKGROUND

Traditionally, a third-party application’s access to sensor
data has been dependent on user permissions. For example,
when an iOS application first requests access to a particular
sensor, i0S will display a prompt asking the user to decide
whether to grant that request (and then never ask again);
Android displays a prior-to-installation manifest outlining
the sensor usage that the application wants and will only
permit installation if the user agrees to this sensor usage.
These types of systems are all-or-nothing (the application
either receives full access to that sensor’s datastream, or
no access at all), do not encourage least privilege, and rely
on the user both having the expertise to make an informed
decision, and taking the time to make that decision.

In order to tackle these issues, Roesner et al. developed a
new style of permission granting, using access control gad-
gets [19]. Their focus was to develop a system that main-
tained least privilege, while also being non-disruptive to
users. They did this by developing a system where permis-



sion granting is built into the actions the user performs with
the application: the application gets permission to various
resources via the user’s interactions with an access control
gadget. Although this system does encourage developers
to avoid requesting permanent access when it is unneces-
sary, and gives users the choice to revoke said access, it
nonetheless is still all-or-nothing and thus has the poten-
tial to provide more information to the application than the
application explicitly needs. TaintDroid [6] takes a different
approach: information flow control is used after applications
get access to sensitive data to determine what sensitive data
can be used in what context by the application.

DARKLY [13] combined access control, algorithmic trans-
formation of sensor data, and user audit to provide privacy
protection. They also use privilege separation; their system
is split into two parts: a trusted local server and an un-
trusted client library. The trusted DARKLY server is a priv-
ileged process that has direct access to the sensors; applica-
tions get “opaque references” to all sensitive data, which can
only be dereferenced by their modified OpenCV functions, or
accessed through special “declassifier” routines, which must
be specifically designed. They evaluated their system by
testing it on 20 existing OpenCV applications, measuring
whether any modification of the application was required,
and how much the functionality and accuracy of the appli-
cations degraded. We base our testing corpus on this set
of applications as a way to evaluate the applicability and
performance of our architecture.

Other work has focused on the growth of wearable and
ubiquitous cameras. PlaceAvoider [22] is a probabilistic
framework used to detect where a photo was taken. It flags
photos taken in sensitive locations (such as bathrooms) for
user review before they are made available to applications.
MarkIt [18] is a privacy marker framework that allows users
to mark off parts of a video feed that are sensitive and should
not be captured in the future.

Jana et al. introduced the abstraction of the “recognizer” [12].

A recognizer takes the raw sensor data as input and outputs
higher-level objects (such as a face or motion vectors). Rec-
ognizers allow for a fine-grained permission system: appli-
cations can request output from a specific recognizer, and
this provides a clean way for users to understand what in-
formation the application is gaining access to. Jana et al.
argued for a small fixed set of system-provided recognizers,
corresponding to common computer vision tasks they found
that met all of their applications’ needs (e.g., hand tracking,
skeleton detection). However, this fixed set of recognizers
does not allow for general computation on the sensor data.
Novel applications could easily require new recognizers or
customized versions of existing recognizers. For example,
an application wanting access to the color temperature of
the scene would not be able to function with their fixed set
of recognizers. Our work focuses on how to allow for novel
recognizers in a secure manner.

3. SECURITY ARCHITECTURE

The goal of our security architecture is to enforce the
modularization and least privilege of visual recognizer appli-
cations. Such applications should separate their computer
vision logic (the “recognizer” logic) from their application
logic. The recognizer logic only needs access to the com-
puter vision APIs, the camera, and a limited amount of
state, but most filesystem access and all network access can
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be removed. The application logic has full privileges except
it is not given access to the camera. This design is simi-
lar to the design of “content scripts” in Chrome’s extension
architecture [4,9].

Compared to previous security mechanisms for visual rec-
ognizer applications [12], we allow fully general program-
ming of the recognizer, therefore developers can come up
with novel recognizers or customized versions of existing
ones, instead of having to rely on a fixed set of system-pro-
vided recognizers. We focus on a much more generalizable
application framework than either DARKLY or system-pro-
vided recognizers. Our architecture provides secure access
to the live camera, while being easy to use for applications
that interact with other libraries and services.

Our design is summarized in Figure 2. The input to the
recognizer is a sequence of video frames, and we assume it
will do some processing on each frame separately and output
something for each one. In particular, we assume it will do
some computer vision processing separately on each frame
(which is pure computation on this input) and then output
some information (e.g., some high-level semantic features)
about that frame. The recognizer sends its output to the
application, proxied through the supervisor. The supervi-
sor limits the rate at which the recognizer can send data.
This serves two functions. First, it prevents a lazy program-
mer from simply forwarding the entire video stream to the
application module, maintaining separation of privilege for
the entire application. Second, it limits the amount of in-
formation from the camera that could be exfiltrated by the
application. Additionally, the supervisor can periodically
reset the recognizer module to prevent it from accumulating
state about past video frames and exfiltrating it slowly.

Our architecture targets applications which are non-mali-
cious but potentially harmful or exploitable. In particular,
we do not directly protect against side channels, although
our sandbox implementation indirectly eliminates most use-
ful high-bandwidth channels (which typically rely on net-
work or filesystem resources). Instead, we focus on non-
malicious but possibly buggy or careless applications. A
careless application might unintentionally expose raw video
data to cloud services or third parties (potentially through
advertising code). A buggy or poorly implemented appli-
cation might be compromised and used to access the raw
camera feed. Our sandbox architecture protects against all
of these threats.

3.1 Implementation

Our supervisor, written in Python, spawns a child process
for the recognizer and the application modules and then ex-
ecutes the main functions for each in these new processes.

The supervisor also acts as a proxy for all data sent be-
tween the recognizer and the application. The modules com-
municate over named IPC sockets created by the supervisor
using zeromq and passed to the recognizer and application.
The supervisor limits the bandwidth of this channel using
a token bucket with configurable fill rate and bucket size.
To ensure liveness of results from the recognizer, the token
bucket uses a deque with a max-length of 2. This max buffer
size can cause frames to be dropped but prevents old results
from filling up the queue and being delivered to the appli-
cation after they are no longer contextually relevant. We
implemented optional automatic zlib compression of all ob-
jects sent over these sockets. The recognizer compresses the



marshaled byte-string and the application decompresses it
before un-marshaling.

The application can also communicate settings back to the
recognizer through another set of sockets. This channel is
limited to JSON dictionaries of settings, to prevent the ap-
plication module from updating the code of the recognizer
module, but is not bandwidth-restricted. Several of the ap-
plications in our testing corpus perform such bi-directional
communication.

We chose Python and zeromq for ease of implementation
and portability. For instance, our implementation could
be easily ported to other platforms simply by changing the
sandbox implementation. OpenCV and zeromq both have
Java and Objective-C bindings, so our design could be eas-
ily ported to Android and iOS, two platforms where we see
visual recognizer applications becoming more popular, and
where fine-grained permission systems already exist. Other
vision libraries could be used as well, as very little of our
design depends directly on OpenCV.

The recognizer can easily be sandboxed using a system
such as seccomp-bpf, to restrict the recognizer module to
limited filesystem access and no network access. Our imple-
mentation supports the use of either seccomp-bpf on Linux
or the OS X sandbox API [15]. On Android, a tool like SE
Android [21] could be used. However, we leave implement-
ing the sandbox policy itself (a slow process of evaluating
the security of each system call) to future work. Projects
such as Chromium have successfully developed such policies
for their security goals.

The supervisor controls the setup of each of the subpro-
cesses, and can additionally add ingress and egress filters
on the recognizer module, allowing arbitrary filtering of the
video data before it is retrieved by the recognizer or before
the recognizer’s output is sent to the application module.
We implemented an example ingress filter which blurs all
faces in each captured frame using OpenCV’s VideoCapture
class. We leave a full exploration of sensor filtering to future
work.

Our implementation is lightweight and relatively simple.
Our supervisor is only 228 SLOC. All of our privilege-sepa-
rated Python implementations of the 17 applications in our
corpus come to a total of 1,140 SLOC.

3.2 Case Study: Face Detection

Converting a computer-vision-based application for use in
our architecture is a simple process. Listing 1 shows the
(simplified) source code for our face detector application.
The application loads a Haar cascade classifier, opens the
camera, and reads video frames from the camera. For each
frame, it detects all faces using the Haar cascade, draws
their bounding rectangles on a blank frame, and displays
the result to the user.

To convert this for use in our architecture, we break it
into two pieces, roughly at the “split point” shown in List-
ing 1. Listing 2 shows the code for the recognizer module:
it handles all steps through computing the bounding rectan-
gles of the faces in the frame, and then simply sends this list
of rectangles over its socket to the supervisor proxy. List-
ing 3 shows the code for the application module: it polls for
objects on its socket, and then draws all bounding boxes re-
ceived on a blank frame and displays the result to the user.
Notably, the application module never receives images of the
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def main():
cascade = cv2.CascadeClassifier(cascade_file)
capture = cv2.VideoCapture()
capture.open(args.video)
while True:
retval, frame = capture.read()
gray = cv2.cvtColor(frame,
cv2.COLOR_BGR2GRAY)
cv2.equalizeHist (gray)
detect(gray, cascade)
point
width, depth =
np.zeros ((height,
np.uint8)
draw_rects(blank, faces, (255, 255,
cv2.imshow (" face_detector", blank)
if cv2.waitKey(5) 27:
break

gray =
faces =
# Split
height,
blank =

720,
width,

1280, 3
depth),

255))

Listing 1: A simplified version of our unmodified
face detection application. The application reads a
frame from the camera, detects faces, and draws the
rectangular bounding box for each detected face.

def main(capture, send_socket):

cascade = cv2.CascadeClassifier(cascade_file)
while True:
retval, frame = capture.read()
gray = cv2.cvtColor(frame,
cv2.COLOR_BGR2GRAY)
gray = cv2.equalizeHist(gray)
faces = detect(gray, cascade)
send_socket.send_pyobj(faces)
Listing 2: A simplified face detection recognizer
module. The recognizer reads frames from

the camera, detects faces, and then sends their
coordinates to the supervisor proxy.

def main(recv_socket):
while True:
recv_socket.poll ()
faces = recv_socket.recv_pyobj ()
height, width, depth = 720, 1280, 3
blank = np.zeros((height, width, depth),
np.uint8)
draw_rects(blank, faces, (255, 255,
cv2.imshow (" face_detector", blank)
if cv2.waitKey(5) == 27:
break

255))

Listing 3: A simplified face detection application
module. The application polls and receives
bounding box objects sent by the recognizer through
the proxy, and uses the face coordinates to draw
their rectangular bounding boxes.




faces themselves, or anything other details of the raw video
frames, only the locations of the faces in each frame.

4. EVALUATION

We evaluated our architecture using the DARKLY applica-
tion corpus [13], a set of existing OpenCV applications span-
ning a wide range of algorithms and vision tasks. Because
those applications are several years old and OpenCV’s API
has evolved since then, we updated their original C/C++
code to be fully compliant with the modern OpenCV C++
API. When applicable, we changed the output of these ap-
plications to fit the recognizer paradigm. Often these appli-
cations output the original video frame alongside the data
they were extracting from it. We also added two other sim-
ple applications to complement the DARKLY applications. A
full list of these changes and the additional applications we
added to the corpus is in Appendix A.

For consistency, we ported each application to Python.
Porting was often straightforward and followed line-for-line
from the original application code, replicating the function-
ality and implementation as closely as possible. Then, we
re-factored these implementations to be suitable for our ar-
chitecture: we separated each into a recognizer and an ap-
plication module.

For reproducible results, we created a 1-5 second long
video for each application, tailored to have the objects or
characteristics expected for video captured by that applica-
tion. In our performance measurements, we used this video
as the input to the application.

We ran each application in three different configurations:
native (the original application, a monolithic C/C++ ap-
plication), monolithic Python (our port to Python), and
privilege-separated Python (our version split into separate
recognizer and application modules). For each, we collected
log data from 80 trials over the video file. All experiments
were performed on a Raspberry Pi 2 Model B, which has
an 900MHz quad-core ARMv7 CPU and 1GB of RAM, run-
ning Raspbian 7, and run in headless mode under the virtual
framebuffer Xvfb. This device is similar to Google Glass in
terms of hardware and performance.

4.1 Performance

For our performance experiments, the supervisor’s token
bucket had a fill rate and bucket size large enough to never
drop any items. This allows us to separate the effects of the
bandwidth limitation from the overhead of the architecture
and proxy themselves.

We measured the performance of our privilege-separation
architecture implementation in terms of:

e Frame rate: frames read and processed per second
e Startup time
e Proxy delay (latency)

A goal for many computer vision applications is real-time
video processing, which means the processing of a single
frame should take only 30-40 ms (corresponding to roughly
30 frames per second) [17]. Figure 3 shows the frame read
rate for each application. This measures how many frames
the application can read from its video input and process in
a second.

We found that the privilege-separated Python versions
were frequently even faster than their monolithic Python
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counterparts, and sometimes even faster than the native
C++ versions. This speedup is a positive side effect of our
privilege-separated architecture exposing more opportuni-
ties for parallelism, giving a speedup on multi-core CPUs.
The recognizer can run in parallel with the application mod-
ule, enabling both to run at higher frame rates. We verified
this effect by re-running the application with all processes
forced onto the same core (using CPU affinity to simulate
a single-core CPU); for most applications, the performance
gain disappears.

Even when restricted to a single core, the privilege-sepa-
rated version can still be faster than the original monolithic
version in some cases. This is a subtle consequence of how
the applications in our corpus tend to be structured. To
avoid monopolizing the CPU and allow interaction with the
user interface, the original monolithic versions pause for 5
ms after each iteration of their processing loop’. In the
privilege-separated version, the separate recognizer process
can run and do useful work during this pause.

Overall, for most applications, privilege separation rarely
slows down the application, and 5 out of the 17 applications
saw a speedup of 10% or more, and 3 out of the 17 applica-
tions saw a speedup of over 30%. Thus, privilege separation
often exposes useful opportunities for parallelization. This
experience suggests that the performance does not need to
be a barrier to deployment of our proposed architecture.

Figure 4 shows the average startup time for each applica-
tion (the time from starting to reading the first frame). The
startup time is very low across the board, in absolute terms,
and our privilege-separation architecture has at most a mod-
est effect on startup time. Our measurements do not include
the overhead of initializing the Python VM and loading the
initial imports.

Finally, the added latency of our architecture needs to be
small, so that results received by the application are suffi-
ciently “live”. Low latency allows a much greater range of
applications that rely on real-time contextual information.
Table 1 shows the average delay introduced by our architec-
ture for each application. This measures the time between
the recognizer detecting a feature in the video frame and
sending an object on its outgoing socket, and the applica-
tion receiving and decoding that object. The worst delay is
for ellipse-fitter, which is still less than 5ms. The supervisor
delay does not appear to be affected by whether the ap-
plication requires bi-directional communication between the
recognizer and the application modules, or by the size of the
objects being sent through the supervisor proxy. To give a
point of comparison for these numbers: virtual reality (VR)
applications have exceptionally strict latency requirements
to maintain virtual registration, around 15 ms [3]. For all of
our applications, our supervisor proxy adds minimal latency
compared to this threshold.

4.2 Bandwidth

Our architecture enforces a bandwidth-limited channel be-
tween the recognizer and the application in order to restrict
the recognizer from extracting unnecessary information from

LAll of the DARKLY applications with processing loops call
waitKey after each iteration of the loop, i.e., after process-
ing each frame of video. This is a commonly recommended
practice for OpenCV applications to allow interaction with
the user interface. We retained this in all of our modified
versions.
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the raw video data. The bandwidth setting is closely related
to the level of privacy and security protection provided by
our architecture.

To measure the privacy levels enforced by such a channel,
we considered a malicious recognizer that attempts to exfil-
trate video with enough fidelity that the application could
still detect faces in the output, but possibly not enough to
recognize who is visible. We hypothesized that this rep-
resents a conservative lower bound for the frame rate that
would be needed to capture video of a socially embarrassing
or revealing moment about some human person.

We started with a test input video of a mostly station-
ary face in the middle of the frame. Of course, a malicious
recognizer could compress the video from the camera us-
ing lossy compression and exfiltrate the compressed result,
rather than raw video, thereby using less bandwidth. To re-
flect this, we compressed the test input video as much as pos-
sible, while ensuring that the person’s face is still recogniz-
able in the compressed video. In particular, we compressed
the video using ffmpeg and libx264, trying a range of resolu-
tions (maintaining aspect ratio) and settings, and measuring
the size of the resulting compressed video. This yields much
better compression ratios than compressing each frame of
video separately. We applied OpenCV'’s facial detection al-
gorithm to each compressed video, rejecting any compressed
video where faces were no longer detectable, and kept the
smallest compressed video where faces remained detectable.

Our test input video was 5.4 seconds long and 720p reso-
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lution; uncompressed, it was 6.2 MB. We found that at the
optimal combination of resolution and target size (1218 x
684 pixels at 50 KB target size), we can get a 48756 byte
video that still has detectable faces. At 30 frames per sec-
ond, over 5.4 seconds, a malicious recognizer would need to
exfiltrate 300 bytes per frame to exfiltrate this 5.4 second
compressed video.

Additionally, we tested our privacy budget qualitatively
by encoding a more realistic video to fit under the 300 bytes
per frame budget. We used a 34 second clip from a video
featuring people outdoors in natural lighting [20]. Figure 5
shows a frame from the heavily compressed video. At under
300 bytes per frame, faces and distinguishing features are
heavily blurred and artifacted.

Accordingly, we set a privacy budget of 300 bytes per
frame, and evaluated how many applications would stay
within this budget. In other words, we envision that the su-
pervisor proxy could be configured to limit the bandwidth
from the recognizer to the application module to a maxi-
mum of about 300 bytes per frame, and then we analyze
how many applications will continue to work without vio-
lating this budget.

To do this, we measured the bandwidth requirements of
the applications we tested. Table 2 shows the average total
size of objects sent for a single frame by each application,
in increasing order, as well as the average sizes when we
enabled zlib compression.
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Figure 5: A frame from the realistic test video when
re-encoded to fit under our 300 bytes per frame pri-
vacy budget. The original video was a 34 second clip
from the full video, at 720p resolution and 27.9MB
total size. Our re-encoded version was 291KB. Faces
are almost completely blurred. (Frame is from the
video “Jorge Aravena” by skydiveandes [20], licensed
under CC BY 3.0 [5]. Compressed from original.)
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We see that the applications which only extract straight-
forward features from the frame, such as the coordinates of
a face, have very small object sizes, while those that extract
features of the entire frame, such as a histogram or edges,
have larger object sizes, and those that send the entire frame
(or modified versions of it) in some modified form have very
large object sizes. In the best case, the recognizer might only
send objects very infrequently. In the worst case, a recog-
nizer would be sending an object every frame. In the average
case, this could be amortized by setting the bucket size of
the supervisor proxy high enough to allow intermittent large
objects.

Some applications may not function as recognizers (such
as morphology) because these applications don’t “recognize”
anything from the video and have too high a bandwidth
requirement. Instead, they could be used as a step in a
more involved computer vision task in a true recognizer ap-
plication. 4 of our 17 applications would work as-is even
with their bandwidth limited to our privacy budget of 300
bytes/frame. 12 of our 17 applications would work if they
limited their output to once every 30 frames.

We recognize that 300 bytes/frame is a highly conservative
privacy budget, and a higher bandwidth limit might be rela-
tively harmless in practice. Our test input video is based on
conditions that are favorable to a malicious recognizer, likely
unrealistically favorable: it exhibits little to no movement,
large subjects in frame, no other background objects or ac-
tivity, and clear lighting. Also, our experiment presumes
the ability to do multiple encoding passes instead of a fixed



Application Delay (ms) +95%CI
template-matcher 0.003 40.001
intensity-changer 0.004 +0.000
ocr-digit 0.004 40.000
ball-tracker 0.005 40.000
face-detect 0.007 +0.000
corner-finder 0.007 40.000
downsampling-edge-detector 0.008 +0.000
hist-calc 0.008 40.000
square-detector 0.029 4+0.000
back-project 0.032 £0.000
hand-detector 0.039 40.000
priv-video 0.040 40.000
sobel 0.040 40.000
laplace 0.112 40.001
morphology 0.184 40.002
hsv-hist 0.368 +0.059
ellipse-fitter 2.803 +0.057

Table 1: The average delay of sending an object
through the supervisor proxy (in milliseconds). This
is the time between the recognizer module marshal-
ing and sending the object on the socket to the ap-
plication module receiving the object and un-mar-
shaling it.

constant bit rate, whereas in practice a malicious recognizer
would have to compress the video in realtime and use a con-
stant bit rate. Also, if the supervisor resets the recognizer
periodically, a malicious recognizer would find it even more
difficult to achieve such a compression rate. Therefore, we
acknowledge that our experiment is based on conservative
assumptions about the threshold of concern, and might give
a unduly pessimistic view of our architecture’s ability to sup-
port existing applications. We use this experiment to try to
capture a conservative but objective measure of the fuzzier
notion of “embarassing video”: if the quality is so low that
it is not even possible to recognize a face, then the potential
harm of leaking the entire video is likely to be fairly low.

4.3 Developer burden

Refactoring the Python implementations for our architec-
ture was often as simple as splitting the application into
two pieces and adding three lines for socket communication
(send, poll, and receive in the main loops). We presented
a case study of converting the face detection application in
Section 3.2. Our experience was that converting applica-
tions to our architecture was usually straightforward. The
more complicated cases involved bi-directional communica-
tion between the recognizer and the application and vice-
versa; these required slightly more complicated handling of
the multiple sockets to avoid blocking, but ultimately each
of these applications reused most of the same code for han-
dling this.

This experience suggests that in most cases our architec-
ture would not impose onerous burdens on application de-
velopers. Converting existing applications could be done
with a modest effort, and we expect that developing new
applications with this architecture in mind might be even
easier.
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Application Object size Compressed
(bytes) (bytes)
ocr-digit 48.00 56.00
ball-tracker 56.00 64.00
template- 62.39 72.00
matcher
face-detect 184.00 192.00
corner-finder 344.00 319.13
intensity-changer 1,200.00 365.96
hist-calc 3,320.00 2,999.18
hsv-hist 4,016.00 2,016.19
square-detector 12,726.38 6,651.10
downsampling- 76,976.00 4,545.48
edge-detector
ellipse-fitter 122,124.82 45,179.60
hand-detector 921,776.00 1,388.73
priv-video 921,776.00 9,023.52
sobel 921,776.00 491,073.79
back-project 921,928.00 83,192.45
laplace 2,764,976.00 944,050.47
morphology 5,5629,816.00 2,122,782.51
Table 2: The average size of objects (in bytes)

sent over the supervisor proxy for each application,
sorted by increasing size.

4.4 Security Analysis

For our privilege-separation architecture, we consider the
following attacker goals:

e Record embarrassing video and exfiltrate it, or
e Extract confidential information (e.g., a credit card
number) and exfiltrate it.

We consider two distinct threat models: one in which the
application module is compromised or under attacker con-
trol, or careless with its data; and one in which the recog-
nizer is compromised or under attacker control, or careless
with its data.

In the first threat model, with a compromised application
module, our architecture prevents both of the attacker goals.
The attacker cannot change what features the recognizer
extracts from the video, and only has access to the recognizer
output. In a monolithic design, an attacker would succeed
at both goals.

In the second threat model, with a compromised recog-
nizer module, our architecture would prevent the exfiltra-
tion of embarrassing video, but would not protect against
the exfiltration of confidential extracted information. The
attacker could change the recognizer’s code to extract the de-
sired sensitive information, but would not be able to bypass
the bandwidth restriction of the supervisor proxy. Again,
in a monolithic design, an attacker would succeed at both
goals.

S. DISCUSSION

Privacy. We make the distinction between two kinds of pri-
vacy breaches: leaking specific short secrets, and leaking em-
barassing video. Our architecture helps with the latter but
not the former. For example, it does not prevent leakage of
a credit card number (extracted from a credit card in the



image) or key strokes (extracted from a visible keyboard) or
a house key bitting code (extracted from a picture of a house
key). It does prevent leakage of a video of someone acting
stupidly, or a video of someone in a compromising position
(such as in a state of undress), or a family member spying
on and recording someone.

Applicability. We manually reviewed the 20 applications
in the DARKLY corpus. Two were no longer available, one
could not be compiled, and two could not directly fit into
our recognizer paradigm (a QR decoder and an application
which takes two images and adds them together, outputting
the result). The remaining 15 applications were readily con-
vertible to our architecture. We believe this is a strong ar-
gument for the applicability of our architecture to existing
OpenCV applications, even if they are not necessarily per-
forming “recognition” tasks. A full list of the applications in
our corpus is in Appendix A.

Recognizer state. We want to be able to limit correla-
tion and long-term monitoring within the recognizer module.
Limiting the state of the recognizer and periodically reset-
ting it (made possible by the functional design of recognizer
modules) could protect against these threats.

An ideal recognizer would have no state, or at least only
initial state (e.g., loading a classifier model). However, it is
often the case that a recognizer maintains some amount of
state from frame to frame (such as details of several past
frames in order to track foreground motion). Only two ap-
plications in our corpus maintained any state across frames;
both of these would work with limited or periodically reset
state.

To efficiently reset the recognizer, we propose a hot swap-
ping mechanism, where a new instance of the recognizer is
started before the reset, and fed the same input frames as
the old instance. Then, at the reset, the recognizer-to-proxy
socket is disconnected from the old instance and connected
to the new instance. This way, the new instance has had
time to “warm up” its state before its output is used by the
application, and there is no startup cost when resetting.

Filtering. Our implementation includes a proof-of-concept
option to blur all faces in each captured frame. Other possi-
ble filters include background removal (this could work par-
ticularly well for perceptual input applications, which only
want to detect foreground movement) or text blurring (e.g.,
to prevent accidentally leaking credit card numbers or sen-
sitive documents). These kinds of filters perform a similar
function to the “noisy permissions” of Jana et al. [12]. Egress
filtering (filtering the output of the recognizer) is much more
challenging, due to the lack of semantics on the data being
sent through the supervisor. DARKLY accomplished egress
filtering (what they call “declassifiers”) by explicitly adding
filters to each requisite OpenCV function [13]. Our general-
ity means we do not impose any semantics on the recognizer
result, making egress filtering much more challenging. How-
ever, we feel that ingress filtering can accomplish many of
the same goals as DARKLY’s declassifiers.

Blackbox differential analysis. In our architecture, the
recognizer module operates as a sort of pure function over
the camera input. This could allow us to analyze a recog-
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nizer as a black box, without needing to analyze the source
code. By controlling the frames inputted to a recognizer,
it would be possible to determine what the behavior of the
recognizer is. For example, if switching only the faces on an
input frame causes a change in the recognizer output, one
might be able to conclude that the recognizer is extracting
facial information. This technique could be automated and
used by app store reviewers, or to inform users of the infor-
mation extracted.

Support for native applications. Allowing native code mod-
ules in our architecture could be useful for cases where opti-
mizing the Python implementations is not sufficient for per-
formance requirements. Some abstractions might be needed
for marshaling data in a cross-compatible manner if the rec-
ognizer and application modules are written in different lan-
guages. To support native modules, our supervisor proxy
can function as is, but after spawning the subprocesses for
the recognizer and application modules, it would execute
native executables instead.

6. CONCLUSION

Our privilege-separation architecture helps to secure vi-
sual recognizer applications while allowing generic and novel
computation on the video input. Our evaluation finds that
our architecture is practical, has a modest performance im-
pact, requires little developer burden, and provides signifi-
cant privacy and security benefits.
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Availability

The source code for the implementation of our architecture
and all of the applications, along with the scripts we used
to perform the evaluation, are available online at
https://github.com/christhompson /recognizers-arch.
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APPENDIX
A. APPLICATION CORPUS

Table 3 lists the applications we used from the DARKLY
corpus, and the modifications we made to them. It also lists
the applications from the DARKLY corpus we did not use,
and our reasons for omitting them. Many of the DARKLY ap-
plications required conversion to the modern OpenCV C++
API (from of the outdated C API) in order to maintain par-
ity with our Python versions.

In addition to the DARKLY applications, we added the
following to our testing corpus:

e face detection (face-detect)
e sobel edge detector (sobel)
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